Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: an analytical study.

نویسندگان

  • B Roska
  • L Gaal
  • F S Werblin
چکیده

It was suggested that glutamate concentration at the synaptic terminal of the cones was controlled primarily by a voltage-dependent glutamate transporter and that diffusion played a less important role. The conclusion was based on the observation that the rate of glutamate concentration during the hyperpolarizing light response was dramatically slowed when the transporter was blocked with dihydrokainate although diffusion remained intact. To test the validity of this notion we constructed a model in which the balance among uptake, diffusion, and release determined the flow of glutamate into and out of the synaptic cleft. The control of glutamate concentration was assumed here to be determined by two relationships; 1) glutamate concentration is the integral over the synaptic volume of the rates of release, uptake, and diffusion, and 2) membrane potential is the integral over the membrane capacitance of the dark, leak, and transporter-gated chloride current. These relationships are interdependent because glutamate uptake via the transporter is voltage dependent and because the transporter-gated current is concentration dependent. The voltage and concentration dependence of release and uptake, as well as the light-elicited, transporter-gated, and leak currents were measured in other studies. All of these measurements were incorporated into our predictive model of glutamate uptake. Our results show a good quantitative fit between the predicted and the measured magnitudes and rates of change of glutamate concentration, derived from the two interdependent relationships. This close fit supports the validity of these two relationships as descriptors of the mechanisms underlying the control of glutamate concentration, it verifies the accuracy of the experimental data from which the functions used in these relationships were derived, and it lends further support to the notion that glutamate concentration is controlled primarily by uptake at the transporter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors.

We evaluated the role of the sodium/glutamate transporter at the synaptic terminals of cone photoreceptors in controlling postsynaptic response kinetics. The strategy was to measure the changes in horizontal cell response rate induced by blocking transporter uptake in cones with dihydrokainate (DHK). DHK was chosen as the uptake blocker because, as we show through autoradiographic uptake measur...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse

A cone photoreceptor releases glutamate at ribbons located atop narrow membrane invaginations that empty onto a terminal base. The unique shape of the cone terminal suggests that there are two transmitter microenvironments: within invaginations, where concentrations are high and exposures are brief; and at the base, where concentrations are low and exposure is smoothed by diffusion. Using multi...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 1998